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SUMMARY

In this paper we consider a pure-streamfunction equation of the Ladyzhenskaya equations. For certain
values of the parameters of the equation, the studied equation becomes identical to the pure-streamfunction
equation of the Navier–Stokes equations. A weak form, a finite element method approximation procedures,
and an iterative method for solving the discrete nonlinear problems are provided. Using the Bogner–Fox–
Schmidt element, the steady 2-D incompressible flow in a driven cavity is solved using a grid mesh of
16× 16. Streamfunction contours are also displayed showing the main features of the flow. Copyright q
2007 John Wiley & Sons, Ltd.

Received 4 April 2007; Revised 13 July 2007; Accepted 16 July 2007

KEY WORDS: Navier–Stokes equations; Ladyzhenskaya model; subgridscale model; finite element;
streamfunction formulation

1. INTRODUCTION

Understanding flow is central to many important problems in engineering. However, in many
situations it is still not clear which models are the most appropriate. The Navier–Stokes equations
(NSE) are generally accepted as providing an accurate model for the incompressible motion
of viscous fluids in practical situations. This research will consider one model introduced by
Ladyzhenskaya [1, 2]. The following paragraph, summarized from [3], addresses the reasons for
choosing the Ladyzhenskaya model and the attractions of the streamfunction formulation. From
a modeling stand point, the NSE are a special case of the Ladyzhenskaya equations (LE). This
leads to the conclusion that any flow that can be accurately described by solutions of the NSE can
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be at least as accurately described by solutions of the LE. For certain values of the parameter q ,
the LE considered here are identical to the Smagorinsky model [4]. Ladyzhenskaya has shown
[1, 2] that solutions of the equations in the non-stationary case and in three space dominions are
globally unique in time. The analogous result for the NSE has not been proved and is believed
not to be true. The condition derived in [3] which guarantees the uniqueness of the solutions
of the stationary LE model is, in some sense, less pessimistic than the analogous condition for
the NSE. Also, the analogous condition for the stationary Ladyzhenskaya model [5, 2] generally
guarantees uniqueness for the higher values of the Reynolds number than that predicted for the
Navier–Stokes model. This research also has the advantage of using the streamfunction formulation
of LE. The attractions of the streamfunction formulation are that the incompressibility constraint
is automatically satisfied, the pressure is not present in the weak form, and there is only one scalar
unknown to solve for.

2. MODEL EQUATION

The model we work with is as follows: consider the motion of stationary ideal incompressible
viscous fluids in a bounded domain � in R2 with Lipshitz boundary ��, and let u denote the
velocity field, p the pressure, � the streamfunction, and f the body force per unit mass. Then the
model is given by [SL]

�xx (A�xx ) + 2�xy(A�xy) + �yy(A�yy) − �y��x + �x��y = f2,x − f1,y in � (1)

�= ��

�n
= 0 on �� (2)

where A= �0 + �1‖D�‖q−2, D�=[�xx ,�xy, �yx , �yy]T, and ‖D�‖ = [�2
xx +2�2

xy +�2
yy]1/2 with

�0 = (1/Re), where Re is the Reynolds number, �1>0 and q − 2>0. If we set �1 = 0, equation
[SL] reduces to the streamfunction form of the NSE. Finite element analysis of this form can be
found in [6]. Fairag [5, 7, 8] studied the two-level finite element analysis and some computational
aspects.

[SL] is derived from the LE in the velocity–pressure form:

−∇( Â1(u)∇u) + (u · ∇)u + ∇ p= f (3)

Many researchers in LES prefer the use of the symmetric part of the gradient ∇su = (∇u + ∇uT)/2.
In this case, Equation (3) becomes

−∇( Ã(u)∇su) + (u · ∇)u + ∇ p= f (4)

where Ã(u) = �0+�1‖∇su‖q−2
F , Ã1(u) = �0+�1‖∇u‖q−2, as ‖·‖F is the Frobenius norm defined by:

for all V ∈ R2, ‖V ‖F = (
∑2

i, j=1 VV T)1/2. With Korns inequality, all results proven for Equation
(3) can be extended to Equation (4) immediately. The LE, (3) have been proposed in [1, 2]. Finite
element error analysis of this model was carried out in Du and Gunzburger [3, 9] under a global
uniqueness (small data) condition. Layton provided [10] an error analysis for the high Re number;
also he provided a formula for choosing q and �1 so that one can construct a higher-order method
that is just as stable as a first-order upwind method. Iterative method for solving the discrete
nonlinear problems (3) is given in [9].
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3. TWO WEAK FORMULATIONS

In this section, we introduce two weak formulations for the streamfunction equation of the LE.
We follow the notation of [11]. For each �∈ H1(�), define curl�= (�y, −�x )

T. For each
u= (u1, u2)T ∈ [H1(�)]2, define curlu= (�u2/�x) − (�u1/�y). Let Wm,p(�) be the Sobolev
space associated with the norm ‖�‖m,p,� := (

∑
|�|�m

∫
� |���(x)|p d�)1/p, p<∞ . We define for

q>0, W 2,q
0 (�) := completion of C∞

0 (�) in the W 2,q -norm.
We now present the weak formulation for problem [SL] which can be obtained through the

standard procedure, e.g. multiplying the original equation by test functions and integrating by parts
[WSL1]:

Find �∈W 2,q
0 (�) such that for all �∈W 2,q

0 (�)

a1(�,�) + â1(�,�, �) + b(�;�, �) = (f, curl�)
(5)

where

a1(�, �) = �0

∫
�

���� dx dy, â1(�, �, �) = �1

∫
�

‖D�‖q−2D�D� dx dy

b(�; �, �) =
∫

�
��(�y�x − �x�y) dx dy, (f, curl�) =

∫
�
f · curl� dx dy

Similarly, multiplying the streamfunction equation of (4) by test function and integrating by parts
give [WSL2]

Find �∈W 2,q
0 (�) such that for all �∈W 2,q

0 (�)

a2(�,�) + â2(�,�, �) + b(�;�, �) = (f, curl�)
(6)

where

a2(�, �) = �0

∫
�
[2�xy�xy + 1

2
(�yy − �xx )(�yy − �xx )] d�

â2(�, �, �) = �1

∫
�

‖�s�‖q−2
F

[
2�xy�xy + 1

2
(�yy − �yy)(�yy − �xx )

]
d�

‖�s�‖2F = 2�2
xy + 1

2
(�yy − �xx )

2

Existence and uniqueness and finite element error analysis of the weak form [WSL1] were carried
out in [12]. [WSL1] has a unique solution under a certain condition depending on its parameters.
This uniqueness property has been proved in [12]. In this paper, we focus our attention on finite
element approximations of the model problems [WSL1] and [WSL2] described above.

4. DISCRETIZATION AND ITERATIVE METHOD

Let �h be a regular finite element triangulation where h is a discretization parameter that tends to
zero. We define a finite-dimensional space Xh such that Xh ⊂ W 2,q

0 (�). Then, we approximate
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Table I. Accuracy of finite elements for the streamfunction form.

Finite element Argyis Clough–Tocher Bogner–Fox–Schmidt Bicubic spline

‖� − �h‖2 = O(hs) s = 4 s = 2 s = 2 s = 2

[WSL1] and [WSL2] by the following the discrete problem:

Find �h ∈ Xh such that for all �h ∈ Xh

ai (�
h, �h) + âi (�

h, �h,�h) + b(�h;�h, �h) = (f, curl�h)
(7)

where in (7) i = 1, 2. Existence and uniqueness of the solution to (7) can be found in [12].
The inclusion Xh ⊂ W 2,q

0 (�) requires the use of finite-element functions that are continuously
differentiable over �. Argyis triangle, Clough–Tocher triangle, Bogner–Fox–Schmidt rectangle,
and Bicubic spline rectangle [8] are examples of finite-element spaces for the streamfunction
formulation of the LE. In [12], we established the error bound given in the following theorem.
This theorem and its proof can also be found in [12].
Theorem 4.1
Let Xh ⊂ W 2,q

0 (�) be a finite element space. Let � be the solution to [WSL1] and �h be the
solution to (7). Then ‖� − �h‖H2

0 (�)�C(Re) inf�h ∈ Xh ‖� − �h‖H2
0 (�), for h sufficiently small.

As an example, if the Bogner–Fox–Schmidt rectangles are used, then there exist a positive
constant C such that |� − �h |2�Ch2. For each of the elements mentioned above, Table I shows
the error estimates.

Now, we will describe an iterative method for the nonlinear system resulting from the discretiza-
tion. First, we linearize the added nonlinear term and then solve the nonlinear system of equations.
Let �(0) ∈ Xh be given, then we define the sequence �(n) ∈ Xh for n = 1, 2, 3, ., to be the solution
of the following nonlinear discrete system:

Find �(n) ∈ Xh such that for all �h ∈ Xh

ai (�
(n), �) + âi (�

(n−1),�(n), �) + b(�(n); �(n), �) = (f, curl�)
(8)

The resulting system from (8) is a nonlinear system and if we use Newton’s method to solve
this nonlinear system, then the resulting matrix from each iteration is sparse and nonsymmet-
ric, whose symmetric part is positive definite. The suggested linear solver for such a system is
any conjugate gradient-alike method. It is known that the convergence is very rapid when the
errors are small. Choosing �(n−1) to be the initial guess in solving the nonlinear system (8)
is considered to be a good choice because as n increases �(n) tends closer and closer to the
exact solution. For n = 1, we choose �(0) = 0 which leads to solve the NSE. The requirement
‖residual(n+1)‖�‖residual(n)‖, n = 0, 1, . . . , is imposed on the method.
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5. COMPUTATIONAL EXPERIMENTS

We consider the driven cavity problem in the 2-D box [0, 1] × [0, 1] with no-slip boundary
conditions, i.e. u1 = u2 = 0 in all boundaries except y = 1, where u1 = 1. This problem has been
studied and addressed by many researchers [13]. The numerical computation in this section was
obtained using a Compaq nc8230 with Intel Mobile CPU 1.86GHz running Windows XP. Bogner–
Fox–Schmit elements are used with 8 × 8 and 10 × 10 grid points.

5.1. Different Reynolds numbers

We choose �1 = 1.0e − 40 and q = 4. We compute an approximate solution using the weak form
[WSL2] for Re= 1, 10, 30, 100, and 150. Also, we compute an approximate solution for the NSE
with Re= 150. Figure 1 displays streamfunction contours. Our computations show that we obtain
a stable approximation of the solution for the LE. The top right corner shows that the contours
are very smooth. In the bottom right corner, the number of vortices and the size of the vertices
increase as the Reynolds number increases.

5.2. Different values for q

We solve the LE using (6) with 10× 10 grid points on [0, 1] × [0, 1] with fixed Reynolds number
Re= 10, �1 = 1.0e − 40, and q = 2, 4, and 6. Also, we solve the NSE with Re= 10 on the same
mesh. Then, we compute ‖�h

L − �h
q‖ where �h

q is the approximate solution of the LE and �h
ns is

the approximate solution of the NSE. Then, we compute ‖ · ‖0,� and ‖ · ‖1,�. Table II shows the
result of these computations.

(a) (b) (c)

(d) (e) (f)

Figure 1. Contours for different values of Re: (a) Re= 1; (b) Re= 10; (c) Re= 30;
(d) Re= 100; (e) Re= 150; and (f) NSE with Re= 150.
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Table II. Differences between the approximate solution of the
streamfunction using LE and NSE.

‖�h
2 − �h

ns‖s ‖�h
4 − �h

ns‖s ‖�h
6 − �h

ns‖s ‖�h
2 − �h

4‖s
s = 0 4.257E−5 4.257E−5 9.0914E−10 9.136E−11
s = 1 7.469E−5 7.469E−5 2.0000E−09 1.1343E−09

Table III. The CPU-time ratio to the NSE [WSL1].

NSE LE-12 LE-11

WSL1 1 2.04 6.01
WSL2 1.02 2.79 12.79

Table IV. Cases of divergence.

NSE NSE LE LE
[WSL1] [WSL2] [WSL1] [WSL2]

Re= 170 conv div conv conv
Re= 175 div div conv conv
Re= 180 div div conv div

5.3. CPU-time comparisons

We solve the LE and NSE equations using [WSL1] and [WSL2] with 10 × 10 grid points having
fixed Reynolds number Re= 10, q = 4, and the same initial guess. Table III summarizes the speed
comparisons. The second and third rows show the ratio of CPU time to that of NSE using [WSL1].
Thus, NSE using [WSL1] is 6.01 times faster than LE with �= 1e − 11 using [WSL1], and 2.79
times faster than LE with �= 1e−12 using [WSL2]. In general, using [WSL1] is faster than using
[WSL2].

5.4. Cases of divergence

We solve the NSE and LE using [WSL1] and [WSL2] with 8× 8 grid points and q = 4, � = 1E−
20, 1E − 22, 1E − 23, and we use the solution of the NSE with Re= 100 as an initial guess.
Table IV summarizes these cases of divergence.
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